2018 CERTIFICATION Consumer Confidence Report (CCR) Recd 7/1/19 List PWS ID #s for all Community Water Systems included in this CCR The Federal Safe Drinking Water Act (SDWA) requires each Community Public Water System (PWS) to develop and distribute a Consumer Confidence Report (CCR) to its customers each year. Depending on the population served by the PWS, this CCR must be mailed or delivered to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Make sure you follow the proper procedures when distributing the CCR. You must email, fax (but not preferred) or mail, a copy of the CCR and Certification to the MSDH. Please check all boxes that apply. | - | | |---------|---| | | Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other) | | | ☐ Advertisement in local paper (Attach copy of advertisement) | | | ☐ ☐ On water bills (Attach copy of bill) | | | ☐ Email message (Email the message to the address below) | | | □ | | | Date(s) customers were informed: 66 / 66 / 2019 / /2019 / /2019 | | ·B | CCR was distributed by U.S. Postal Service or other direct delivery. Must specify other direct delivery methods used | | | Date Mailed/Distributed:// | | | CCR was distributed by Email (Email MSDH a copy) Date Emailed: / /2019 | | | ☐ As a URL(Provide Direct URL) | | | ☐ ☐ As an attachment | | | ☐ ☐ As text within the body of the email message | | | CCR was published in local newspaper. (Attach copy of published CCR or proof of publication) | | | Name of Newspaper: Rich on Dis PATCH | | | Date Published:// | | | CCR was posted in public places. (Attach list of locations) Date Posted: / / 2019 | | | CCR was posted on a publicly accessible internet site at the following address: | | | (Provide Direct URL) | | I herel | TIFICATION by certify that the CCR has been distributed to the customers of this public water system in the form and manner identified and that I used distribution methods allowed by the SDWA. I further certify that the information included in this CCR is true rrect and is consistent with the water quality monitoring data provided to the PWS officials by the Mississippi State Department lth, Bureau of Public Water Supply | | Name | TUAN Lewing 7 (Title (Board President, Mayor, Owner, Admin. Contact, etc.) Date | | | | Submission options (Select one method ONLY) Mail: (U.S. Postal Service) MSDH, Bureau of Public Water Supply P.O. Box 1700 Jackson, MS 39215 Email: water.reports@msdh.ms.gov Fax: (601) 576 - 7800 ** Not a preferred method due to poor clarity ** CCR Deadline to MSDH & Customers by July 1, 2019! # QUALITY WATER REPORT Little Creek Water PWS ID 0560015 - MAY 2018 ## Is my water safe? Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local Water vigilantly safeguards its water supplies and once again we are proud to report that our system has never violated a maximum contaminant level or any other water quality standard. Last year, we conducted more than 12 tests for over 80 contaminants. We only detected 34 of those contaminants, and found zero at a level higher than the EPA allows. This report is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with information because informed customers are our best allies. ## Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). ## Where does my water come from? 3 Miles Southwest of McLain, Highway 98 to Little Creek Road, 2 miles South: Aquifer-Miocene Series. Well Number 560015/01; Well Number 560015/02 ## Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. # How can I get involved? ## How can I get involved? The Little Creek Water Association meets every second Tuesday of each month. The meetings are held at the corner of Prentiss and Posey Road at the well site at 10:00 a.m. #### Educational Statement for Lead Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from Safe Drinking Water Hotline (800-426-4791). # **Water Quality Data Table** The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. | | | | Your | Range | Sample | | | |---|-----------|------|-------|----------|----------|----------|---| | Contaminants (units) | MCLG | MCL | Water | Low High | Date | Violatio | Typical Source | | Unregulated Contaminat
Sulfate (ppm) | nts
NA | NA | 12.7 | NA | **** | No | | | Volatile Organic Contan | imants | | | | 2016 | | | | 1,1,1-Trichloroethane (ppb) | 200 | 200 | 0.5 | NA | 5 | No | Discharge from metal degreasing sites and other factories | | 1,1,2-Trichloroethane (ppb) | 3 | 5 | 0.5 | NA | **** | No | Discharge from industrial chemical factories | | 1,1-Dichloroethylene (pph) | 7 | 7 | 0.5 | NA | awa. | No | Discharge from industrial chemical factories | | 1,2,4-Trichlombenzene
(ppb) | 70 | 70 | 0.5 | NA | **** | No | Discharge from textile-finishing factories | | 1,2-Dichloropropane (ppb) | Ò | \$ | 0.5 | NA | ***** | No | Discharge from industrial chemical factories | | Benzene (ppb) | 0 | 5 | 0.5 | NA | **** | No | Discharge from factories; Leaching from gas storage tanks and landfills | | Carbon Tetrachloride (ppb) | 0 | 5 | 0,5 | NA | S.A.C | No | Discharge from chemical plants and other industrial activities | | Chlorobenzene (ppb) | 100 | 100 | 0.5 | NA | **** | No | Discharge from chemical and agricultural chemical factories | | cis-1,2-Dichloroethylene
(ppb) | 70 | 70 | 0.5 | NA | eiron | No | Discharge from industrial chemical factories | | Dichloromethane (ppb) | 0 | 3 | 0.5 | NA | **** | No | Discharge from pharmaceutical and chemical factories | | Ethylbenzene (ppb) | 700 | 7(X) | 0.5 | NA | **** | No | Discharge from petroleum refineries | | o-Dichlorobenzene (pph) | 600 | 600 | 0.5 | NA | ***** | No | Discharge from industrial chemical factories | | p-Dichtorobenzene (pp | b) | 75 | 75 | 0.5 | NA | 0.00 a.es | No | Discharge from industrial chemical factories | | | |---|-------|------|-----------|----------|-----------|------------|--------|--|--|--| | Siyrene (ppb) | | 100 | 100 | 0.5 | NA | ****** | No | Discharge from rubber and plastic factories; Leaching from landfills | | | | Tetrachlomethylene (p | pb) | 0 | 5 | 0.5 | NA. | - www. | No | Discharge from factories and dry | | | | Toluene (ppm) | | 1 | 1 | 0.5 | NA | | No | Discharge from petroleum factories | | | | trans-1,2-Dicholoroeth
(ppb) | ylene | 100 | 100 | 0.5 | NA | - | No | Discharge from industrial chemical factories | | | | Trichloroethylene (pph |) | 0 | 3 | 0.5 | NA | S MANGONES | No | Discharge from metal degreasing sites and other factories | | | | Vinyl Chloride (ppb) | | () | 2 | 0.5 | 0.5 NA No | | No | Leaching from PVC piping;
Discharge from plastics factories | | | | Xylenes (ppm) | | 1() | 10 | 0.5 | NA | | No | Discharge from petroleum factories; | | | | Trihalomethanes (p | pb) | 0 | 0 | 13.23 | ppb | anacorar . | No | discharge from chemical factories | | | | Haloacetic Acids (I | HAA5) | 0 | 0 | 0.00 | ррь | ***** | NO | H igh clorine reaction | | | | THE MAXIMUM RE | SIDUA | L DI | SINFECTAN | IT LEVEL | | | | | | | | CHLORINE (ppb) | | 4 | 4 | 1.45 | NA | 2017 | NO | DISINFECTION BYPRODUCTS | | | | MRDL RANGE: 0.30 MG/L to 2.22 MG/L Highest QTR RAA: 1.60 MG/L | | | | | • | • | | your CCR in the "Range" field.)
eld "Your Water" on your CCR.) | | | | LEAD | 0.0 | 15 | 2 | NA | 2 | 2017 NO | COROSI | ON OF HOUSE PLUMBING & NATURAL | | | | COPPER | 1.3 | } | 0.2 | NA | 2 | 2017 NO | COROS | SION OF HOUSE PLUMBING & NATURAL | | | ND: Not detected MNR: Monitoring not required, but recommended ppm: parts per million, or milligrams per liter (mg/L) ppb: parts per billion, or micrograms per liter (ug/L) Units Description: NA: Not applicable #### Important Drinking Water Definitions: MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. MRDL: Maximum residual disinfectant level. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. #### Violations: #### Beryllium Some people who drink water containing beryllium well in excess of the MCL over many years could develop intestinal lesions. SIGNIFICANT DEFICIENCY SUMMARY REPORT - 2018 CCR Ground Water Rule 1. During a sanitary survey conducted on 8/25/2015, the Mississippi Department of Health cited the following significant deficiency(s): Lack of redundant mechanical components where treatment is required. CORRECTIVE ACTIONS: This system is out of compliance and subject to enforcement action. Status: In Violation. 2. During a sanitary survey conducted on 8/25/2015, the Mississippi State Department of Health cited the following significant deficiency(2): Inadequate/inoperable control system. CORRECTIVE ACTIONS: This system is out of compliance and subject to enforcement action. Status: In Violation. 3. During a sanitary survey conducted on 8/25/2015, the Mississippi Department of health cited the following significant deficiency(s): Failure to meet water supply demands (overloaded by serving greater than 100% capacity). CORRECTIVE ACTIONS: This system is out of compliance and subject to enforcement action. Status: In Violation. ***IMPORTANT NOTICE (if the status is 'In Violation'): A violation of the Safe Drinking Water Act carries penalties under the Mississippi Code Annotated 41-26-31(1) of not more than \$25,000 for each violation. Each day of a continuing violation is considered a separate violation. ANSWER: All violations listed above were repaired in a timely manner. For more information: **Little Creek Water** Attn: Juan Herring P. O. Box 261 McLain, MS 39456 Phone: (601) 270-5645 PERSONALLY appeared before me, the undersigned Notary Public in and for Perry County, Mississippi, Larry A. Wilson, an authorized representative of *The Richton Dispatch*, a weekly newspaper as defined and prescribed in Sections 13-3-31 and 13-3-32 of the Mississippi Code of 1972, as amended, who being duly sworn, stated that the notice, a true copy of which hereto attached, appeared in the issues of said newspaper as follows: | Vol. <u>114</u> | No. 9 | Date June 6 | _, 20 <u>19</u> | |-----------------|-----------|-------------|-----------------| | Vol | No | Date | _, 20 | | Vol | _ No | Date | _, 20 | | Vol | _ No | Date | _, 20 | | Vol | _ No | Date | _, 20 | | Vol | No | Date | _, 20 | | Vol | _ No | Date | _, 20 | | Vol | No | Date | _, 20 | | Vol | No | Date | _, 20 | | Vol | No | Date | _, 20 | | 6 | - | (1) | | | , , F | Published | _1 times - | | | 7 | Total\$_ | 12 CO | | | C: 4 | fa | my QLIDSON | | Authorized Representative of The Richton Dispatch SWORN to and subscribed before me the 10th day of June , 2019 Notary Public # QUALITY WATER REPORT Little Creek Water PWS ID 0560015 - MAY 2018 Is my water safe? Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local Water vigilantly safeguards its water supplies and once again we are proud to report that our system has never violated a maximum contaminant level or any other water quality standard. Last year, we conducted more than 12 tests for over 80 contaminants. We only detected 34 of those contaminants, and found zero at a level higher than the EPA allows. This report is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with information because informed outstoners are our best allies. Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). Where does my water come from? 3 Miles Southwest of MoLain, Highway 98 to Little Creek Road, 2 miles South: Aquifer-Miocene Series. Well Number 560015/01; Well Number 560015/02 Why are there confaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systema, agricultural livestock operations, and wildlife. Inorganic contaminants, such as sults and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. #### How can I get involved? The Little Creek Water Association meets every second Tuesday of each month, The meetings are held at the corner of Prentiss and Posey Road at the well site at 10:00 a.m. #### **Educational Statement for Lead** Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from Safe Drinking Water Hotline (800-426-4791). ### **Water Quality Data Table** The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. | Contaminants (units) | MCLG | MCL 、 | Your Water | Range
Low High | Sample Date | Violatio | Typical Source | |--|-----------|-------|------------|-------------------|-------------|----------|---| | Unregulated Contamina
Sulfate (ppm) | nts
NA | NA. | 12.7 | NA | - | No | | | Volatile Organie Contan | dinents | | 1. 4 | | 2016 | | | | 1,1,1-Trichloroctione (ppb) | 200 | 200 | 0.5 | NA | _ | No . | Discharge from metal degressing pitts and other factories | | 1,1,2-Trichlorochane (ppb) | 3 | 5 | 0.5 | NA . | - | No | Discharge from industrial chemical factories | | 1,1-Dichlorosthylene (ppb) | .7 | 7 | 0,5. | NA. | | No | Discharge from industrial chemical factories | | 1,2,4-Trichlorobenzene
(ppb) | 70 | 70 | 0.5 | NA. | | - No | Discharge from textile-finishing factories | | 1,2-Dichloropropuno (ppb) | 0 - | 5 | 0.5 | NA | | No | Discharge from industrial observed | | Benzene (ppb) | 0 : | 5 | 0.5 | NA. | 7. | No | Discharge from factories; Leaching from gas storage tanks and fandfills | | Carbon Tetrackleride (ppb) | 0 | 5 | 0.5 | , NA | | . No ' | Discharge from chemical plants and other industrial activities | | Chlorobenzene (ppb) | 100 | 100 | 0.5 | NA | - | : No | Discharge from chemical and | | р-глонопосиясые (ррв) | /3 | /3 | 9.5 | , ren | | 110/2 | 5 | factori | |--|---------|------------------|---------------------------|-------|------------------------|------------|--------------------------|------------------------| | Styreng (ppb) | 190 | 100 | 0.5 | NA. | 21.2 | - | No | Diode | | Tetrachioroethylene (ppb) | 0 | 3 7 | 0.5 | NA. | | | No | Actori
Disthe | | reparameterity same (pper) | 100 | × | 100 | | | | THE R | closes | | Toluene (ppm) | 1 . | · 1 | 0.5 | NA | | - | No | Dischi | | (ppb) | 100 | 100 | 0.5 | NA . | et se | _ | No | Dischu | | Trichlomethylene (ppb) | 0 | . 3 | 0.5 | NA | | | Ne | Dische and of | | Vinyl Chloride (ppb) | -0 | . ,2 | 0.5 | NA. | | -: | No | Leachi | | Xylenes (ppm) | 10 | 10- ,- | 0,5 | NA | 400 | -, | No | Discha | | Tripalomethenes (ppb) | .0 | 0 | 13.23 | ppb | | | No. | dische | | Haloscetic Adds (HAA | 9) 0 | 0 | 0.00 | ppb | | - | NO | High | | THE MAXIMUM RESIDE | JAL DIS | SINFECTA | NT LEVEL | | | | Ι., | , | | CHLORINE (ppb) | 4. | 4, - | 1.45 | NA . | 2 | 017 | NO | DISINF | | MRDL RANGE: 0.30
Highest QTR RAA: 1 | MG/L t | o 2.22 MG
3/L | 1 2018 | (This | range sho
value sho | ould be re | ported or
late the fi | n your Cl
eld "Your | | LEAD 0 | .015 | 2 | NÁ | - 1 | 2017 | NO | COROS | ION OF H | | COPPER | 1:3 | 0.2. | NA NA | | 2017 | ,NO | CORO | SION OF | | | - | ¥ 16 | | | - | | | | | | X | ND: N | ot detecte | ď | | MNR: M | lonitorin | g not re | | Units Description:
NA: Not applicable | 27 | | arts per n
arts per bi | | | | | | Important Drinking Water Definitions: MCLC: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which if expected risk to health. MCLGs allow for a margin of safety. MCL. Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water to the MCLGs as feasible using the best available treatment technology. MRDLIG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below whi expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbia MRDL: Maximum residual disinfectant level. There is convincing evidence that addition of a disinfectar of microbial contaminants. #### Violations: #### Beryflium Some people who drink water containing beryllium well in excess of the MCL over many years #### SIGNIFICANT DEFICIENCY SUMMARY REPORT - 2018 CCR Ground Wai - During a sanitary survey conducted on 8/25/2015, the Mississippi Department of Health cli deficiency(s): Lack of redundant mechanical components where treatment is required. COF system is out of compliance and subject to enforcement action. Status: In Violation. - 2. During a sanitary survey conducted on 8/25/2015, the Mississippi State Department of significant deficiency(2): Inadequate/inoperable control system. CORRECTIVE ACTIONS compliance and subject to enforcement action. Status: In Violation. - During a sanitary survey conducted on 8/25/2015, the Mississippi Department of health oil deficiency(s): Fallure to meet water supply demands (overloaded by serving greate CORRECTIVE ACTIONS: This system is out of compliance and subject to enforcement actions. #### ***IMPORTANT NOTICE (if the status is 'in Violation'): A violation of the Safe Drinking Water Act carries penalties under the Mississippi Code An more than \$25,000 for each violation. Each day of a continuing violation is considered a set ANSWER: All violations listed above were repaired in a timely manner. For more information: Little Creek Water Attn: Juan Herring